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Abstract. In this paper a periodic delay differential equation with spatial spread 
is investigated. This equation can be used to model the growth of malaria which 
is transmitted by a mosquito. Using monotone techniques, it is shown that the 
following bifurcation holds: either the disease dies out or the density of 
infectious people tends to a spatially homogeneous, time periodic and positive 
solution. 
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1. Introduction 

The purpose of this paper is to investigate the asymptotic behaviour of the problem 

~2~ ( t ,x)  = (1 - u(t ,x))  b ( t , s , x , y )u ( t  - s ,y)dydr/(s)  
0 ~ 

- c(t)u(t, x) + 7(t) Au(t, x), 

u(s, x) = r x), 

Ou 
~ ( t , z )  = 0, 

( t , x )eR+ x f2, 

( s , x ) e ~  x ~2, 

( t , z ) e R +  x #f2, 

where f2 is a bounded region in Ns with ~?f2 ~ C 2, A denotes the Laplace operator, 
6/~?v stands for the outward normal derivative, R+ = [0, ~ )  and N = ( -  o% 0]. 

Marcati and Pozio [73 considered problem (P) under the assumptions that the 
functions b, c do not depend on s, t and the measure dr/has compact support in ~ +. 
They used sequences of contracting convex sets in order to prove the global 
asymptotic stability of a constant solution. Busenberg and Cooke [4] considered 
the equation without diffusion and the measure dr/concentrated at T > 0. They 
proved the existence of periodic solutions by means of a fixed point theorem for 
operators on cones. Moreover, using Lyapunov functions, they showed that these 
solutions are locally asymptotically stable. 
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In this paper, both of the results will be generalized. It is shown that there exists 
a time periodic solution which is globally asymptotically stable. Both, the existence 
and the stability property of the periodic solution are simultaneously established by 
using monotone techniques. 

With the equation (P) we want to model the proportion of infectious persons of 
a communicable disease carried by a mosquito. 

The human population is divided into two classes, susceptible and infectious 
persons, whereas the mosquito population is divided into three classes, infectious, 
exposed and susceptible mosquitos. 

The transmission of the disease is as follows: 
a) Susceptible persons can receive the infection only by contact with infectious 

mosquitos, and susceptible mosquitos can receive the infection only from infectious 
persons. 

b) A susceptible mosquito becomes exposed when it receives the infection from 
an infected human. It remains exposed for some time and then becomes infectious. 

Hence the infection is of S-I-S type in humans and of S-E-I-S type in mosquitos. 
We make the following assumptions about the model: 
c) The infection in humans does not result in immunity, death or isolation. 
d) Both, the mosquito and human population are homogeneously distributed 

over ~2. 
e) The total human population is constant, whereas the total mosquito 

population is allowed to have seasonal fluctuation. 
f) All populations and subpopulations are allowed to diffuse inside f~, however, 

migration through 00 is not allowed. 
Denote by 

u(t, x) = normalized spatial density of infectious persons at time t in x, 

v(t, x) = normalized spatial density of susceptible persons at time t in x, 

where the normalization is done with respect to the spatial density of the total 
population. Hence, the following equation holds 

u(t,x) + v(t,x) = 1, ( t , x ) ~ +  x f2. (1.1) 

Moreover, define 

I(t, x) = spatial density of infectious mosquitos, 

E(t, x) = spatial density of mosquitos which become exposed at time t in x. 

If e(t) denotes the contact rate of humans and mosquitos, the density of new 
infections in humans per unit time is given by 

o~(t)v(t, x)I(t, x) = ~(t)(1 -- u(t, x))I(t, x). 

The density of vanishing infections per unit time is given by 

c(t)u(t, x), 

where c(t) stands for the cure and death rate of infected humans. Moreover, the 
difference of the densities of arriving and leaving infections per unit time is given by 

?(t) Au(t, x). 
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When combining this information we obtain the following equation 

0u 
~t (t,x) = y(t) Au(t,x) - c(t)u(t,x) + (1 - u(t,x))c~(t)l(t,x). (1.2) 

If the mosquito population is large enough, we can assume that 

E(t, x) = h(t)u(t, x), (1.3) 

where h(t) is a positive function. 
If we denote by G(t, s, x, y) the proportion of vectors which arrive in x at time t, 

starting from y at time t - s, then 

f G ( t , s , x , y ) d y = l  and f 

is the density of vectors which became exposed at time t - s and are in x at time t. 
Let dqo(S), s ~ O, denote the proportion of vectors which are still infectious s units 
of time after they became exposed, then 

l(t,x) = f ; f o G(t,s ,x ,y)E(t  - s, y)dydrlo(S) 

= f ~ f G(t,s,x,y)h(t- s)u(t-s,y)dydno(s). (1.4) 

When combining the Eqs. (1.2) and (1.4) we obtain the differential equation in (P), 
where 

f ~  ( f ;  dr/~ -1 b(t ,s ,x ,y)  = c~(t)h(t - s)G(t ,s ,x ,y)  d~lo(r ) and r/(s) = ~/0(s) 
0 

Moreover, it follows that 

a(t,s) :=  | b( t , s ,x ,y )dy  
J f2 

does not depend on x ~ f2. 
Furthermore, the following hypothesis is included: 
g) The functions c(t), a(t, .) have seasonal repetition, i.e. they are periodic in the 

variable t with period co > 0. 
Finally, the condition f) that the human population is confined within f2 is 

expressed by 

~ ( t , z )  = 0, ( t , z ) e ~ +  • ~o. (1.5) 

In the case that the density of infectious people u(t, x) oscillates very rapidly, the 
Eq. (1.3) might not be a good approximation of the real situation any more. Also, 
one would like to drop the assumption d). Maybe in a subsequent paper we can 
relax some of the assumptions and establish a result analogous to the one in this 
paper. 
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2. Statement of the Problem 

We want to prove the existence of a solution to the problem (P) under the following 
assumptions: 

(A1) The set Q is a bounded region in RN with ~'~(~ C 2. 

(A2) The function 7(0 is nonnegative and continuous. 
(A3) The measure dr/is nonnegative on ~+ and S~ dtl(s) = 1. 
(A4) The inequalities b( t , s , x , y )  > 0 and c(t,s) > 0 hold for all t e  N, s~ N+ and 

x, y E O. Moreover, the functions b, c are bounded and continuous. 
(As) The function 

a ( t , s ) ' =  i" b ( t , s , x , y ) d y  
d 

is independent o f x  ~ •, and both, a(t, s) and c(t) are periodic in the variable t 
with period co > 0. 

(A6) The initial function (o(s,x) is continuous and satisfies 0 ~< cb(s,y)<<. 1, 
( s , y ) ~ _  x ~2. 

For any function u(s, x) defined on ( -  ~ ,  r] • f2 denote by u~ the past history 
of u at r, i.e. u~(s, x) = u(s + ~, x), (s, x) ~ ~_ x f2. If in addition the function u is 
bounded and continuous, define 

(J(t, uO)(x ) = b(t, s, x, y)u('c - s, y) dy drl(s ). 
0 

Consider the Banach space E = C(~, R) endowed with the norm 

Iv[~ = max{lv(x)l: x e O } ,  vEE,  

and the operator A with domain 

D(A) = u e E :  A u e E ,  Ov 0 on ~f~ 

and defined by 

(Au)(x) = Au(x), u e D(A). 

With the substitution (u(t))(x) = u(t, x) we can formulate problem (P) as an abstract 
problem in the Banach space E 

(P1) ~ = 7(t)Au + (1 - u(t))J(t, ut) - c(t)u(t), 

ltO = ~). 

3. Existence and Uniqueness of  Solutions 

The hypothesis that 0f2 E C 2 guarantees that for every w e E, 2 > 0 there exists a 
u ~ D(A) which solves the equation Au - 2u = w, (e.g. see [6]). Moreover, from [8, 
Th. 13, p. 78] it follows that the solution u is unique and [u[~ ~< (1/2)[wl~. Hence we 
can apply the Hille-Yosida theorem (e.g. see [-2, Th. 4.2.1, p. 171]) which 
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establishes the existence of a strongly continuous semigroup of operators, denoted 
by e tA ~ C(E, E), with infinitesimal generator A and 

Ilet~[I ~< 1, t e  N+, (3.1) 

etAp = p, p is a constant function over f2. (3.2) 

Suppose that veE ,  0 ~< v and define p = rv[E. Clearly, we can consider p as a 
constant function over O. From (3.1) and (3.2) it follows that 

p - -  e t A v  = etAp - e~% = dA(p -- v) <~ [p - vIE <~ p 

and hence 

O ~ ctAv, v >/ O, t e ~ + .  (3.3) 

According to the assumption (A2) we can define the operator 

(; ) K(s, t) -- exp 7(r) dr A , s <~ t. 
s 

The following equalities are easily seen to be true: 

K ( t ,  t )  = 1, (3.4) 

K(s, z)K(~, t) = K(s, t), s <~ z <~ t, (3.5) 

d 
dss K(s, t)u = - 7(s)AK(s, t)u = - 7(s)K(s, t)Au, u ~ D(A). (3.6) 

Now we can put problem (P1) in its mild form 

(P2) t u ( t ) = K ( O ' t ) u ( O ) + f t o K ( S ' t ) ( ( 1 - u ( s ) ) J ( s ' u s ) - c ( s ) u ( s ) ) d s '  

~Uo = q~. 

It follows from the contracting mapping principle that there exists a 6 > 0 such that 
problem (P2) has a unique solution u s C(( - o% g], E). Furthermore, the solution u 
exists globally if and only if it is bounded on any finite interval. 

In order to show that the solution u is bounded we need the following lemma. 

Lemma 1. Suppose that the function u solves the integral equation 

u(t) = K(O,t)u(O) + f'o K(s , t ) f (s ,  us)ds, t~[0 ,6) ,  

where f is a continuous function. I f  h is a real valued and continuous function on [0, 6), 
then the followin9 identity holds for all t ~ [0, 6): 

u(t) = e x p ( -  f 'oh(r)dr)K(O,t)u(O) 

; ( ; )  + - Ir  t ) ( h ( s ) u ( s )  o exp s h(r) dr + f(s, us)) ds. 
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Proof. For 0 ~< s, t < 6 define 

k(s, t) -= exp - , then ~sk(S, t) = h(s)k(s, t). 

Consider the term 

Itoh(S)k(s,t)K(s,t)u(s)ds 

= fto h(S)k(s, t)K(s, t) (K(O,s)u(O) + f l  K(z,s)f(~, uO dz)ds 

= h(s)k(s, t)K(O, t)u(O) ds + h(s)k(s, t) K(~, Of(z, uO dr ds. 
0 

Observe that the function K(z, 0 f ( z ,  u0 is continuous in ~ and that 

j ,t h(s)k(s, t) = - k(O, t). ds 1 
0 

Integration by parts leads to the identity 

f 'o h(s)k(s, t)K(s, t)u(s) = K(0, t)u(O) - k(0, t)K(O, t)u(O) ds 

+ s, t K(~, t)f(~, uO 
0 s=O 

- t)g(s, t)f(s, Us) ds 

= - k ( o , t ) K ( o , t ) . ( o ) -  

+ + 

The assumption of the lemma and the equation (3.7) imply 

f'ok(S,t)K(s, u(t) = k(O, t)K(O, t)u(O) + t)(h(s)u(s) + f(s, us))ds 

and the proof  of the lemma is finished. []  

4. Invariance of Solutions 

With the equation (P2) we wish to describe the density of a certain population. 
Therefore, we are primarily interested in solutions u(t) which satisfy 0 4 u(t) <~ 1. 

In order that our model makes sense, any mild solution u(t) of (P2) with 
0 ~< Uo ~< 1 must satisfy 0 ~< u(t) ~< 1 for all values t where u is defined. I f  this is true 
then the solution u exists globally. In this section even more will be shown, namely if 
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u, v are mild solutions of (P2) such that 0 ~< u0 ~ Vo ~< 1, then 

O <. ut <<. v, <~ 1, t ~ ,  

a result which is basic in order to prove the existence and stability properties of 
periodic solutions. 

Define the one dimensional subspace 

F = { u e E :  u is a constant function over ~}, 

and the sets 

U =  { u o e C ( ~ _ , E ) :  0 <~ uo ~<Po}, 

V =  U c ~ C ( ~ _ , F ) .  

According to the contracting mapping principle there exists a 6 > 0 such that the 
problem 

(_u(t) = u(O) + ( -  c(s)u(s) + (1 - u(s)) a (s , r )u(s  - r )d t l ( z ) )ds ,  
(e l )  o 

t-Uo = qSEv 

has a unique solution u e C ( ( -  0% 6), F). 
Since the integrand in (P~) is continuous we can differentiate and obtain 

j .  ( t)  = - c ( t )u( t )  + (1 - u(t))  a ( s , z )u ( t  - ~)dtl(r ), 
(Pl) o 

b/0 z q~ffV. 

Since the operator A is identically zero on F and because of (As) for any qb s V the 
problems (P1) and (P2) coincide with the problems (P]) and (P2), respectively. 

Let u(t)  be a solution of (P]) on [0,6) with u(0)~< 1. Moreover, define 
= sup{ t/> 0: u(t)  ~< 1 } and suppose that ~ < 6. Since the function u is continuous 

we have that u(~) = 1 and 

du 
~-(~) = - c ( ~ )  < 0 .  ( 4 . 1 )  
a t  

The right hand side of the equation in (P'I) is continuous and so is u'. Therefore, the 
following identity is true 

~ +s 

u(~ + s) = 1 + u'(~) & ,  s ~ ( -  4, 6 - ~). (4.2) 

From (4.1), (4.2) and the continuity of u' it follows that there exists an e > 0 such 
that 

u(~ +s)~< 1, 0~<s~<~. 

This is obviously in contradiction to the choice of 4. Therefore, ~ = 6 and u(t)  <<. 1 
for t e  [0, 6). Moreover, from (4.2) it is easily seen that u(t)  < 1, 0 < t < 6. 

Now we are in the position to prove the main result of this section. 
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Theorem 1. For each (a ~ U, the initial value problem (P/)  has a unique solution u( t ) on 
all o f  ~ + and ut ~ U, t ~ ~. Moreover, i f  v(t) is another solution of(P2) with Vo ~ U and 
Uo <~ Vo then ut <<. vt, t ~ ~. 

Proof. i) Let u(t), v(t) both  be solutions of  (P2) for  t~ [0, ,5], 6 > 0. Fur thermore ,  
assume that  Uo, Vo ~ U and u0 ~< vo. Define the auxiliary funct ion 

w(t) = v(t) - u(t). 

When subtract ing the integral equat ions for u and v, we obtain  

w(t) = K(O,t)w(O) + f'o K(s, t)g(s,  ws)ds, 

Wo = Vo - Uo ~> 0, (4.4) 

where g(s, ws) = ( -  c(s) - J(s, us))w(s) + (1 - v(s))J(s, ws). Define the number  

= sup ]c(s) + J(s, us)]~ 
O~s<~6 

and the funct ion 

~ ( s )  = ~ - c ( s )  - J ( s ,  us) >>- O. 

According to L e m m a  1, the funct ion w(t) also fulfills the equat ion  

w(t) = e-~'K(O, t)w(O) + f t  ~ e-~'t-S)K(s, t)((1 - v(s))J(s, ws) + fl(s)w(s)) ds. (4.5) 

ii) For  the m o m e n t  we assume in addi t ion that  v o = 1. By the remarks  at  the 
beginning of  this section we have 

1 - v(s) >~ O, se [0 , ,5 ] .  (4.6) 

Define 

and 

p(t)  = sup{qEF:  q <~ w(s), s <~ t}, t <~ ,5, 

= sup{t ~< 6 : 0  <<.p(t)). 

Since Uo ~< Vo we have that  ~ ~> 0. 
Suppose by contradic t ion that  ~ < 6. Wi thou t  loss of  generali ty we can assume 

that  ~ = 0. Therefore,  and since the funct ion p is nonincreasing we have p( t )  < O, 
t ~ (0, ,5]. 

The following inequalities are true 

and 

~(s)w(s) >~ fl(s)p(s) (4.7) 
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>~p(s)f~a(s,r)dn(~). 
Let 
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(4.8) 

O =  sup { l l - v ( s ) l ~ f ~ a ( s , ~ ) d . ( ~ ) +  0 

Since w(0)/> 0 and because of (4.6), (4.7) it follows from the equation (4.5) that 

w(t)>>-ftoe-~(t-S)p(s)(l l-v(s)lEf~a(s,~)drl(r)+~(s))ds 

>>- tOp(t), t~ [0, c~]. (4.9) 

According to the definition o fp ( t )  we must have 

p(t) = sup{qeF:  q <<. w(s), 0 <<. s <~ t} 

i> sup{qeF:  q ~ sOp(s), 0 <~ s ~ t} 

>~ tOp(t), t e  [0,6]. (4.10) 

If  we choose t > 0 such that tO < 1 we get a contradiction to the inequality (4.10), 
because p(t) < 0 and O > 0. 

Therefore, p(t) >~ 0 for t ~< 6 and 

v~ - u~ = w~ >/0. 

We observe that u = 0 is the solution of (Pz) with q5 = 0. This implies that 

0 ~ < v ~ < l .  

Hence the solution v exists globally and vo E U for all 6 ~> 0. Furthermore, any 
solution u(t) of (P2) which exists on [0, 8] satisfies 

uo ~< 1, Uo e U. (4.11) 

iii) Now we drop the assumption on Vo and assume only that Vo e U. We have 
just shown that (4.6) holds in this case, too, and by the same procedure as in ii) we 
obtain that 

u~ ~< v~, if Uo ~< Vo. 

In particular if u = 0 we have 0 ~< vo. This combined with (4.11) leads to 

O ~ < v ~ < l  

and the proof  of the theorem is finished. [] 

As a consequence of Theorem 1 and the remarks at the beginning of this section 
we obtain the following result. 

Corollary 1. I f  u(t) is a solution of  (P2) with Uo ~ U then 

lu(t)lE < 1, t > 0. 
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5. Stability Properties of Periodic Solutions 

For  the rest of  this paper  we shall always choose the initial funct ion ~b in U. The  
main  result will be proved  in this section : if the zero solution is the only co-periodic 
solution of  (P2) then all solutions tend to zero. In the other  case there exists a unique 
~o-periodic solution fi which at t racts  all other solutions except the zero solution. 

Define 

a=sup{s>~O: f;d,~(.O>O}, O < a < o ~ ,  

and 

Z(uo) = sup{luo(~)lE: - a < T ~< 0},  Uoe U. 

I f  Z(Uo) = 0 then J(s, Uo) = 0 and the function u(t) = 0, t >~ 0, solves the equat ion 
(P2). 

The  following l emma  gives a lower bound  for a solution u(t) with X(Uo) > O. 

Lemma  2. Suppose that the function u(t) solves the integral equation (P2) and 
Z(Uo) > 0. Then there exist constants to, p > 0 such that 

( ; )  u(t) >1 p exp - c(r) dr , t />  to. 
to 

Proof Our  assumpt ion  ensures the existence of  a ~ e ~+ c~ [0, a]  such that  

l u ( -  ~)IE > 0. (5.1) 

F r o m  the definition of  a it follows that  

f ~ @(s) > e > 0 for all 0. 
max(0,~-~) 

N o w  it is not  hard  to see tha t  there must  be a # e  ~+ ,  It ~> ~, such that  

ff,'+~ dr/(s) > 0 for  all ~ > 0. (5.2) 
nax(0,p-- D 

I f  we define 0 = # - ~ ~> 0 it follows f rom (Ar and (5.1) that  

f b(O, It, x ,y )u(-  4,Y) dy > x 0 for al l  

Since the integral above  is cont inuous  in the variables p, ~ there must  exist q, 6 > 0 
such that  

f b(O,s,x,y)u(- ~ + p - s,y)dy >i q (5.3) 
g2 

for all x ~ O and max(0,  # - 6) ~< s ~< It + 6. N o w  

J(O, uo) = b(O, s, ", y)u(O - s, y) dy &l(s) 
0 f~ 
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>>- b(O, s, ", y ) u ( -  ~ + I 1 - s, y) dy dtl(s) 
dmax(O,p - 6) ,dD 

) dmax(O,,u-6)qdq(s)  

and because o f  (5.2) there is a qo > 0 such that  

J(O, Uo) >1 qo. 

Since the function J(O, uo) is cont inuous  in 0 we can assume without  loss o f  
generality that  for some 2 > 0 the inequality 

Y(s, us) >>- qo (5.4) 

holds for all s ~ [0, 0 + ill. 
F r o m  (5.4) and Corol lary 1 it follows that 

( 1  - -  u(s))J(s, Us) >1 ql(s), sE(O,O 4- J.], (5.5) 

where the function ql is positive and ql(s)~F, se(O,O + 2]. For  any ~ i> 0, 
according to Lemma 1 the function u also satisfies the equation 

u ( t ) = e x p ( - f f  c(r)dr)K('c,t)u(z) 

+ - (r) dr s, t)(1 - u(s))J(s, Us) ds, t ~> r. (5.6) 

In particular, if we choose r = 0 and t = 0 + 2 it follows f rom (5.5) and (5.6) that  

y+ ( C ~ 
u(O 4- 2)~> J0 e x p , - -  J~ e(r)dr)ql(S)ds = : p  > O. 

If  we choose r = 0 + 2 in (5.6) we obtain that  

u(t) ) exp(- ff c(r)dr)K( ,t)u(r) exp(- ff c(r)dr)p, t >~ ~, 

and the p roo f  o f  the lemma is finished. [ ]  

So far we have not  made use of  the assumption (As) that  the functions a, c are 
periodic. However,  this will be done in the next theorem which contains the basic 
result of  this paper. 

Theorem 2. There exists an co-periodic solution (fit) of  (P'I) which is globally 
asymptotically stable in W = {Uo e U: Z(u0) > 0}. Either ~ =- 0 or 0 < (fit) < l for  all 
taR.  

Proof. i) I f  v(t) denotes the solution of  (P'I) with Vo = 1 then it fol lows from 
Corol lary 1 that v~ ~ 1 = re. Hence, i f  w(t) denotes the solution of  (P'I) with 
We = re, then w(t) ~ v(t), t ~ ~ according to Theorem i. From the assumption (As) 
we conclude that w(t) = v(t + co) and 

v(t + co) <<. v(t), t~ ~. (5.7) 



330 R. Volz 

Hence, for  fixed t the sequence v(kco + t) is mono tone  in k e N and we can define 

a(t) = lira v(kco + t), t e N .  (5.8) 
k-~-m 

From  the identity 

fi(t) = lim v(ko9 + t) = lim v((k - 1)co + t + co) = fi(t + co) (5.9) 
k ~ o o  k ~ o v  

we see that  the function a is m-periodic. 
A straightforward argument  shows that  every solution u(t)  of  (P'I) with Uo e U 

satisfies the inequality 

, u ' ( t ) , < ~ c ( t ) + f ~ a ( t , s ) d t l ( s )  

and hence, the solutions of  (P'I) with Uoe U are equicontinuous on R+. In 
particular,  we obtain that  the convergence in (5.8) is uni form on bounded intervals 
and the function fi is continuous.  

Given e > 0, there exist k0,/z > 0 such that  

f ~drl(s ) < ~ ]v(kco + s) - fi(s)l < ~ >1 ko, s ~ [ -  g, co]. and for k 
// 

Now if t e [0, co] we have 

IJ(t, v ~ + , )  - J(t, ~)1 

<~ a(t,s)lv(kco + t - s) - ~(t - s)ldrl(s) + a(t ,s)drl(s)  

~< 2elaine, 

which tells us that  J(t, Vk~o + 3) converges to J(t, ~ )  uniformly on [0, co]. 
Moreover ,  the following equality holds for all t ~> 0: 

v(kco + t) = v(kco) + f*o ((1 - v(kco + s))J(s, vk~ + ~) - c(s)v(kco + s))ds.  (5.10) 

The integrand in (5.10) converges uniformly on [0, 03] as k tends to infinity and 
hence 

~(t) = 12(0) + f'o ((1 - ~(s))J(s, ~ )  - c(s)12(s)) ds, t ~ [0, co]. 

We have just proved that  ~ is a ~0-periodic solution of  (P'0 and (P2). Moreover ,  
since the convergence in (5.8) is un i form on bounded intervals we have 

lira sup [ v ( k c o + t ) - ~ ( k c o + t ) [ = O  
k - ~  O ~ < t ~ < ~  

and hence 

lim Iv(s) - ~(s)l = 0. (5.11) 
8 ~ o o  
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Furthermore,  if u(t) is any solution o f  (P2) with uo e U, then it follows f rom 
Theorem 1 that  

u(t) <~ v(t), teN.  (5.12) 

ii) We shall now prove the stability asserted in the theorem. I f  fi - 0 then the 
result follows by an argument  combining (5.11) and (5.12). 

This allows us to restrict ourselves to the case that  fi va 0. But then there exists a 
r e R such that  ~(z) > 0 and f rom the equat ion (5.6) it follows that  

~(t) ~> exp - (r) dr ~(z), t >~ z. 

N o w  f rom Corol lary 1 and the periodicity of  the function fi we obtain that  

0 < fi(t) < 1, t e R .  

Consider any solution w(t) of  (P2) with Z(Wo) > O, Woe V. Since u, w e C(R, R) we 
can define 

w(t) 
c5 = lim inf - -  (5.13) 

t~ ~ fi(t)" 

Suppose by contradict ion that  0 < 6 < 1. There exists a q, 0 < q < 1, such that 

1 - f i ( t )  
q3 > 1 - 6fi( t) '  t e R .  (5.14) 

Moreover ,  since the functions fi(t) and a(t, ") are periodic, we can find a 2 > 0 such 
that 

qJ(t,~t) ~ f l a( t , s )~( t -  s)dq(s), teN.  (5.15) 

F r o m  the definition o f  c~ it follows that  there exists z > 0 such that  

w(t) >~ q6~(t), t >~ z. (5.16) 

For  any t ) z + / l  we have that  

J(t, w 0 >~ 

>~ 

/> 

Moreover ,  by the definition o f  6 
that 

lim (w(~k) - 6fi(~k)) = O. 
k~oo 

Without  loss o f  generality we can assume that  ~k ~> Z + 2 and 

( 1  - w ( ~ k ) )  ~> q(1 - 6~((k)), ke  N. 

f l a(t, s)w(t - s) dtl(s ) 

f "~ a( t, s)q6~t( t -- s) d~l(s) 
0 

q26j(t, at). (5.17) 

there exists a sequence ~k, limk ~ oo ~k = 0% such 

(5.18) 

(5.19) 
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Hence, if we write ~ = ck we obta in  

( 1  - w(O)J(~, w 9 >1 q3a(1 - a~(0)J(~, @ (5.20) 

and 

w'(r - 6ff(r = (1 - w(~))J(~, wr - 6(1 - fi(~))J(r t~) - c(~)(w(~) - cSfi(~)) 

>~ 5J({,  ar - 5a(O ) - (1 - fi(~))) - c({)(w({)  - 5a({)). (5.21) 

Using (5.14) and (5.18) it follows f rom (5.21) that  there exist ko, e > 0 such that  

W'({k) -- 6h'({k) > e, k >>, ko. (5.22) 

Any solution u(t)  of  (P ; )  is uni formly  cont inuous  on ~+ and since the functions 
a(t, .), c(t)  are bounded,  cont inuous  and periodic, it follows f rom the equat ion (P])  
tha t  the funct ion u'(t) is uni formly  cont inuous  on ~+.  

This implies that  we can find a { > 0 such that  

g 
w'(~ k + s) - cSfi'({k + S) >~ ~ ,  k >~ ko, s e [ -  ~, ~3. 

By the mean  value theorem we obta in  

and therefore 

g 

w(~k - 0 - ~ 
lim inf 6 ~< lim inf  < 0 

w(t)  >~ boa(t), t ~ [0, 2]. (5.23) 

= sup{t ~> 0: w(r) >~ 6ofi(r),O <~ r <~ t} 

and suppose that  ~ < oo. Then  

w ( ~ )  = a o ~ ( ~ )  

and similarly as in (5.21) we obtain  that  

w'(~) - ao~'(~) > O, 

and we get a contradic t ion to the choice of  4. Therefore  ~ i> 1 and (5.13) implies tha t  

lira inf(w(t) - fi(t)) ~> 0. (5.24) 
t ~ o o  

iii) Given any solution u(t)  of(P2)  with ;~(uo) > 0. Define w(t)  to be the solution 
of  (P'I) such that  

Define 

which is in contradic t ion to the choice of  (3. 
Suppose now that  ~ = 0. Choose  q, )~ as in (5.14), (5.15). Since Z(w0) > 0, 

according to L e m m a  2, we can assume wi thout  loss of  generali ty that  for some 
6 o > 0  
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w(t) = sup{p >~ 0: p ~< u(t)}, t ~< 0, 

Lemma 2 we can assume without  loss of  generality that  then according to 
X(Wo) > O. 

Let v(t) be as in i) then 

w(t) <<. u(t) <~ v(t), t ~ R ,  (5.25) 

and w(t) - ~i(t) ~< u(t) - ~(t) <~ v(t) - ~(t). This leads to the inequality 

Fu(t) - ~(t)le ~< Iv(t) - zi(t)l + max{0, - w(t) + ~(t)} 

and (5.11), (5.24) imply that  

lira Ju(t) - ~(t)lE = 0 (5.26) 
t --~ oo 

whenever Z(uo) > 0. 
iv) N o w  we shall show that  the function ~ is also stable. If  fi = 0, the result is 

easily seen to be true according to (5.7), (5.8) and (5.12). In the case that ~i # 0 let 
w(t) be a solution of  (P'I) such that  for some 6 > 0 the inequality 

Iw(t) - (l(t)l < 6~(t) (5.27) 

holds for all t ~< 0. I f  for some minimal chosen ~ c N +  we would have w(~) = 
(1 + 6)z~(~) or w(ff,) = (1 - 6)fi(~), then f rom the equation in (5.21) we obtain a 
contradict ion to the choice o f  ~. Hence the inequality (5,27) holds for all t ~ R, and 
by Theorem 1 the solution fi is stable and the p roof  o f  the theorem is finished. [ ]  

As a consequence o f  Theorem 2 we obtain the following result. 

Corollary 2. The equations (P1), (P2) have at most one o-periodic solution other than 
the zero solution. 

Corollary 3. The zero solution is the only nonnegative, co-periodic solution i f  and only 
i f  it is stable. 

Example. Suppose that  the functions a, c are constant.  In this case, the function ~ is 
co-periodic for every co > 0 and hence must  be a constant.  The only constant  
solution o f  (P'~) other than the zero solution is 

c 
U ~  1 - -  

a 

 =max{0  :} 
and therefore 

6. Bifurcation Diagram 

We consider the family of  differential equations 

(P(O)) u'(t) = - c(t)u(t) + 0(1 - u(t))J(t, us) 
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0 -- / ~e 
0 e o Fig. 1 

for 0 >/0. Let {to denote the e)-periodic solution of (P(O)), the existence of which 
follows from Theorem 2. It will be shown that the function 

li{t~ : =  sup{{t~ t � 9  R) 

has the diagram of Fig. 1. 
For  the proof  of  this we need the following lemma. 

Lemma 3. Suppose that {to # 0 and there exist z, 5 > 0 such that 

z(1 - 6{t~ - 0(1 - {t~ > O, se  R. (6.1) 

Then ~(s)  >1 6{t~ s �9 ~. 

Proof. Let v(t) be the solution of (P(r)) with Vo = 1. Define 

= sup{t: v(t) > 6{t ~ 

and suppose that ~ < oo. Then 

d(v - 5{t ~ 
(4) = z(1 - v(~))J(~, v~) - 0(1 - {to(~))j(~, 6{t~) 

dt 

>i J ( ~ ,  6 @ ( ~ ( 1  - 6{t~ - 0(1 - {t0(r > 0.  

This is obviously in contradiction to the choice of  { and hence v(t) > 6{t~ t e  R. 
From Theorem 2 it follows that ~*(t) >t 6{P(t), t e ~, and the proof  of the lemma is 
finished. [] 

Choose 0 large enough such that 

1 4") > 0  
q : =  1 - ~  S ( ' , l ) ,  

and let w(t) be the solution of (P(O)) with Wo = 1. Suppose that there is a minimal 
�9 II~ with w(~) = q. Then 

w'(~) = - e(~)q + 0(1 - q)J(~, we) 

>~ - c(~)q + 0(1 - q)qY( ( ,  1) > 0 

which is impossible. Therefore, w(t) >~ q, and by Theorem 2 we have 

lim [{t~ - w(t)l = 0 
t ---~ ~3 

which implies that 
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1 c(')  t ~ ,  0 > 0. (6.2) ri~ >1 1 - ~ J ( ' ,  I) ~ '  

As a consequence o f  (6.2) we obtain that  

lim Ilri~ = 1. (6.3) 
0--* oo 

Choose  z, 0 such that z > 0 and Ilri~ > 0. We can find a 6 > 1 such that  the 
inequality (6.1) holds which implies that  

ri~(s) > ri~ z > 0, Ilri~ > 0, s~ ~. (6.4) 

Define 

0o = inf{0: Ilri~ > 0}, 

then an easy consequence of  (6.4) gives us 

ri~ = 0, z < 0o. (6.5) 

N o w  assume that 0 > 0o. F r o m  Lemma 3 it is not  hard to see that  there exist 6, e > 0 
such that  

ri~ >~ 6ri ~ ~ >>, 0 - e. (6.6) 

Moreover ,  we can let 6 = 6(e) tend to 1 as e tends to zero. Since ri~ r 0 for z ~> 0 - e, 
with the same reason as before, there exist eo, 6o > 0 such that  

rio ~> 6ori~, 0 - ~ ~< z ~< 0 + eo. (6.7) 

When combining (6.6) and (6.7) we obtain that  

firi0 ~ ri~ ~< ~ t i0 ,  0 - e ~< z ~< 0 + eo. (6.8) 

N o w  if we let e and eo tend to zero we can let 6, 6o tend to 1 which implies that  

lim[lri~ _ fio[[ = 0, 0 > 0o. (6.9) 

In view of  (6.5) and (6.9) the funct ion Ilri~ is cont inuous except possibly at the point  
0 =  0o. 

Because o f  (6.4) we can define 

p : =  lim Ilri~ (6.10) 
0 ~ 0 o  
0 > 0 o  

Suppose by contradict ion that  p > 0. Then there exist 4(0) e N with 

ri~ > p, 0 > 0o. 

F r o m  the equat ion (5.6) it follows that  

ri~ >1 p exp - , t ~> ~(0), 

and since all the functions rio are co-periodic, there must  exist a q > 0 such that  
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Ct~ /> q, s ~ ~, 0 > 0o. (6.11) 

It  is not hard to see that 0o > 0, hence, we can choose numbers ~, 0 with z < 0o < 0 
and 6 > 0 such that the inequality (6.1) is fulfilled. But then 

which is in contradiction to (6.5) and therefore the number p is equal to zero. 
Finally, a combined argument of (6.4) and (6.10) shows that fi0o = 0 and the 

function Ila~ is proved to be continuous. 
We summarize our results in the following lemma. 

Lemma 4. The function I I~~ is continuous, nondecreasin 9 and strictly increasin 9 i f  it is 
positive. Moreover, we have 

lim I1~~ = 1. 
0~o~3 

Remark  1. The assertion in Lemma 4 remains true if we replace I1~~ by the function 

A(~ ~ = inf{fi~ s ~ R}. 

7. Criterion for the Existence of a Positive Periodic Solution 

In this chapter we deal with the question whether or not the solution ~ defined in 
Theorem 2 is positive. We shall give a criterion in terms of the linear equation 

(L(O)) w'(t) = - c(t)w(t)  + OJ(t, w,), t >t O. 

Lemma 5. Let 0o = inf{0:fi0 # 0}. The zero solution o f  ( L( O) ) is asymptotically stable 
for  0 < 0o, it is repellin9 for  0 > 0o. 

Proof. i) Assume that 0 > 0o and let w(t) denote a solution of (L(O)) with 
0 ~< w0 ~< 1 and X(Wo)> 0. Suppose that the function w(t) is bounded, say 
Iw(t)[ <~ M, t e ~ .  Choose 6 > 0 such that 

61w(t)[ ~< ~fi~ t e  R, (7.1) 

where fi0 is the nonzero, co-periodic solution of (P(O)). Let u(t) denote the solution of 
(P(O)) with Uo = 6Wo. We observe that the function 6w(t) also solves the equation 
(L(O)). Define 

= sup{t ~> 0: ~Sw(t) >~ u(t)} 

and suppose that ~ < oo. Then 

6w'(~) - u'(~) = OJ(~, 6wr - 0(1 - u(~))J(r ur > O, 

which is obviously a contradiction, therefore 

u(t) <~ 6w(t), t ~ R. (7.2) 

Since the function w(t) is positive we obtain from (7.1) and (7.2) that 

u(t) <<. ~ ~  t~ ~. (7.3) 

This contradicts Theorem 2 and the zero solution of equation (L(O)) is proved to be 
repelling. 
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ii) A s s u m e  n o w  tha t  0 < 0o. The re  exists a cS > 0 such tha t  

0 - 00(1 - 6) < 0. (7.4) 

Moreove r ,  since the  zero so lu t ion  o f  (P(Oo)) is s table  we can  f ind a so lu t ion  v(t) of  
(P(Oo)) with  inf{v(s):  s e  ~ } > 0 a n d  

v(t) ~< 3, t > 0. (7.5) 

F r o m  the de f in i t ion  of  0o a n d  T h e o r e m  2 it fol lows tha t  

lira v(t) = 0. (7.6) 
f ~ o C  

Cons ide r  any  so lu t ion  w(t) of  (L(O)) with  sup{lw(s)t: s ~< 0} < oo. We  can  f ind a 

p > 0 such tha t  

Iw(s)l ~< p v ( s ) ,  s ~ ~ _ .  

Suppose  tha t  

t hen  

~ = sup{t  >~ O: w(t) <~pv(l)} < or, 

w ' ( ~ )  - p v ' ( ~ )  = o J ( ~ ,  w~) - 0o(1 - v(~_))J(~_,pvO 

<, J(~,pv~)(O - 0o(1 - v(~)). 

W h e n  us ing  the inequa l i t i e s  (7.4), (7.5) it fol lows tha t  

w'(~) -pv ' (~)  < 0, 

which  is imposs ib le .  There fore ,  we o b t a i n  the i nequa l i t y  

w(t) <~pv(t), tEN. 

I f  we cons ide r  - w ins tead  o f  w, it fol lows tha t  

]w(t)t <~pv(t), t ~ ,  

a n d  f rom (7.6) we see tha t  the f u n c t i o n  w(t) t ends  to zero as t t ends  to inf ini ty .  [ ]  

In  a f o r t h c o m i n g  pape r  [13]  a c r i t e r ion  for  the existence of  n o n t r i v i a l  pe r iod ic  

so lu t ions  is given.  
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