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Systems of linear nonautonomous delay differential equations are considered 
which are of the form y:(t) = I:;=, jib,Jt, s) yk(t -s) dq,Js) - c,(r) y,(t), where 
i = I,..., n. Sufficient conditions are derived for both the asymptotic stability and the 
instability of the zero solution. The main result is found by a monotone technique 
using elementary methods only. Moreover, additional criteria are obtained by using 
the method of Lyapunov functionals. ,tIl I986 Academic Press, Inc 

1. TNTR~DUCTI~N 

Delay differential equations often occur in Mathematical Biology, 
Ecology, and many other areas, whenever time lags are taken into con- 
sideration. A variety of such applications are presented in [Z]. 

One of the main problems here is to decide whether or not there exist 
equilibrium solutions, and if they do, whether or not they are stable. The 
local stability problem often depends on the linearized part of the differen- 
tial equation around the equilibrium solution. For a typical example of 
such a situation see [7]. This is why we can restrict our stability analysis 
to linear systems. 

We consider systems of the form 

Yltt)= f jTbiktc2 s, I’k(r-S) dt?ik(S)-Ci(f) .YjCt)9 
k=l o 

where t 2 0, 0 < T < 00, i = I,..., n. The functions bik(f, s) and c,(t) are 
assumed to be continuous on R + x [0, T] and R + , respectively. 
Moreover, the functions q&(s) are assumed to be nondecreasing on [0, T]. 
A special case of (1) occurs when n = 1 and q,,(s) is a piecewise constant 

function with jumps of length 1 at T, d T. 
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In this case the equation takes the form 

Yitt)= 5 bll(t3 Tj) Yl(?- Tj)-cl(t) .Yl(f). (2) 
j=l 

The last equation has already been studied by several other authors. 
They derive sufficient conditions for the zero solution to be asymptotically 
stable. See [3; 4, p. 1081. In the present paper, not only sufficient, but also 
necessary stability conditions are derived. The results in Section 2 are 
obtained by a monotone technique which requires elementary methods 
only. These results are applied to a special case in Section 3. Finally, in Sec- 
tion 4 we use Lyapunov functionals in a manner similar to that in [3, 4, 5, 
63 to prove additional criteria. The idea of the proof is similar to that in 
[6], however, it is applied to a more general equation. We use linear 
Lyapunov functionals and this case is easier to handle than the case of 
quadratic Lyapunov functionals as it was done in [3]. The reader can see 
[l] for a different type of necessary and sufficient conditions for stability of 
certain systems. 

It is mentioned that the criteria obtained in this paper are actually useful 
in practice as is illustrated by some examples. 

2. BASIC CRITERIA 

We consider the system (1) and assume that the functions brk, ci are con- 
tinuous and that the functions qik are nondecreasing, i, k = l,..., n. It is well 
known that a solution of (1) exists on R + and is uniquely determined by 
preassigning its values for t E [ - T, 01. Moreover, the solution has the 
representation 

+ ste -y&,(r) dr i: T b;&, s) Y~(X - s) &ids) dx, (3) 
0 ( J k=l 0 > 

where i, k = l,..., n and t > 0. 
To establish criteria for the stability of the system (1) we also consider 

the system 

z:(t)= i J”’ Ibik(t, ~11 zk(t--s) dq;k(S)-CAt) z<(t), 
k=l o 

(4) 

where i, k = l,..., n and t 2 0. Clearly, the equations in (3) also hold if we 
replace yi and bik by zi and 1 b, 1, respectively. We will make use of this in 
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LEMMA 1. Let y,(t) and z,(t) be solutions of the systems (1) and (4), 
respectively, such that 

Yi(t) < zi(t), i = l,..., n, (5) 

-for t E [ - T, 01. Then the inequalities (5) also hold for t 2 0. 

Proof Define the function $(t) = min,(z,(t) - y,(t)), t 3 - T. It is easy 
to see that tj(t) is continuous and t)(t) > 0 for t E [ - T, 01. Now suppose 
that the assertion of the lemma is wrong. Then there exists a number r > 0 
such that t)(t) > 0 for t E [ - T, <) and 1+9(r) =O. On the other hand it 
follows from (3) that 

Z,(t) - 1 yj(t) I 3 eplic’(r’dr(Zi(0) - I Yj(O) I) 

6 ’ 
+ e c 

-I’,<,(r) rlr 
0 

x ,;, I,’ I bid x, s) zd---S)--h,Ax> s)y/A-x--s)1 dr,,hW> 

for all i = l,..., n. From our assumptions it is easy to see that the second 
term on the right-hand side of the above expression must be greater or 
equal to zero. Hence, we have that 

z,(t) - I yi(t) / 3 e s~'l(r)dr(zi(0) - 1 y,(O) I) > 0, 

for all i = I,..., n. Therefore, we conclude that 11/(c) > 0 and obtain a con- 
tradiction to the choice of 5 and the proof of the lemma is finished. 

An easy consequence of Lemma 1 is the following result. 

COROLLARY 1. The zero solution of the system (1) is (asymptotically) 
stable provided that the zero solution of the system (4) is (asymptotically) 
stable. 

This allows us to restrict our stability analysis to the system (4). If we 
choose y,(t) = 0 in Lemma 1 we obtain 

COROLLARY 2. Suppose that z,(t) is u solution of (4) with z,(t) > 0 for 
t E [ - T, 0] and i = l,..., n. Then z,(t) > 0 for all t 2 - T and i = l,..., n. 

COROLLARY 3. Assume that zj’), zj” are both solution of (4). If the 
inequalities z!‘)(t) > zi2)(t), i = l,..., n, holdfor all t E [ - T, 0] then they also 
hold for all t 2 - T. 
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Proof: Since we are dealing with a linear equation we have that 
zi(t) = z!‘)(t) - zi2)( t) is a solution of (4) too. Now the result follows easily 
from Corollary 2. 

Now we can present our basic criteria. 

THEOREM 1. The system (4) is asymptotically stable if and only tf there 
exist constants t, > 0, ~1, > 0 and continuous functions g,(t) such that the con- 
ditions 

lim c--to3 I ti gi(r)dr= -a, 

kgl .r,’ I bik(t, s)\ cr,el:iEgk(r)dr dnik(s) 

d (C,(t) + g,(t)) a,eJkgl(r)dr (7) 

hold for all t 2 t, and i= l,..., n. Conditions (6) and (7) are sufficient for 
asymptotic stability of (1). 

Proof (i) Suppose that the system (4) is asymptotically stable. From 
Corollary 2 it is easy to see that there must exist a solution z,(t) of (4) with 
z,(t) > 0 for t > - T. If we define cli = z,(O) and g;(t)= zj(t)/z,(t) then the 
following identities hold: 

z,(t) = crieJbR’(‘)dr, i= 1 ,..., n. 

Now it is easy to see that equality holds in (7) with to = 0, and (6) holds as 
well since lim, _ o. z,(t) = 0. 

(ii) Suppose that the statements (6) (7) hold for some functions g,(t) 
and some tli > 0. For E > 0 define 

wi( t, E) = cr;e16(~~(r) + c) dr, i = l,..., n. 

Now consider a solution z,(t) of (4) with z,(t) > 0 for t E [ -T, 0] and 
i= 1 ,...? n. There must exist a number p > 0 such that 

PziCt) < wi(t, O), t E [to, to + T], i = l,..., n. 

Since we are dealing with a linear equation we have that pz,(t) is a solution 
of (4), too, and we can assume without loss of generality that p= 1. Next, 
suppose that there would exist E > 0 and a minimally chosen 5 > to + T 
such that for some index j the equation w,(t, E) = zj(<) would hold. Then 
z,(t) < w,(t, E) for all tE [& T, 5) and i= l,..., n. On the other hand, since 
wj(<, E) = z,(s) we obtain from (4) and (7) that 

409,‘120/2-13 
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z;(t) = i: j’ I bjk(5, s) I Zk(5 -s) dVjk(S) - c,(5) M?/(& E) 
k=l o 

d i: j= 
k=l o 

1 bjk(t, $1 1 wk(< - ‘> ‘1 hjk(s) - cj(t) wj( 4, &) 

- c,( t ) ec5 ~ ‘O)‘W,( 4, 0) 

Hence, we have that z,!(t) < wJ[, E) and this is obviously in contradiction 
to the choice of <, E. Therefore, the inequalities z,(t) < wi(t, E) hold for all 
t 2 to, E > 0, and i = l,..., n. Using (6) it follows that lim, _ oc z,(t) = 0. So we 
have found one solution which tends to the zero solution. Now given any 
solution .2,(t) of (4). There must exist a number 0 > 0 such that 
-zi( t) < tZi(t) < z,(t) for all t E [ -T, 0] and i = l,..., n. Now from 
Corollary 3 we can see that lim,, oc, 0z,(t) = 0 and the zero solution is 
proved to be asymptotically stable. 

Using the same method as before one can establish the following coun- 
terpart to Theorem 1. 

THEOREM 2. The system (4) has unbounded solutions if and only if there 
exist constants to 2 0, ai > 0 and continuous functions gj such that 

lim sup 
s 

5 
gj(r) dr = co for some j E { l,..., n >, (8) 

F-m 10 

3 (c,(t) + g,(t)) aieJ:og~cr) dr (9) 

for all t B to and i = I,..., n. 

It is mentioned that the system (1) may be asymptotically stable even 
though the system (4) may not be asymptotically stable. 

COROLLARY 4. (i) The systems (1 ), (4) are asymptoticaZly stable 
provided that there exist constants to B 0, E > 0, a, > 0 such that 

eaT kc, JOT uk 1 bdt, s) 1 dV;k(s) < ai(Cdt) - 6) (10) 

for all t 2 to and i = I,..., n. 
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(ii) The system (4) h as unbounded solutions if there exist numbers 
t, 2 0, E > 0, ai > 0 such that 

e pET ,c, /oT ak I bik(tr s)ldVds) 2 aLcAt) + ~1 (11) 
for all t > t, and i = l,..., n. 

Proof. To prove (i) we put g,(t) = -E and show that (7) holds. But this 
follows easily from (10) and the fact that 

,$y( -E) dr < eETes:o( --c) dr, SE [0, T]. 

The proof of (ii) follows analogously from Theorem 2 with g,(t) = E. 

The applicability of Corollary 4 is demonstrated in 

EXAMPLE 1. Consider the system 

A(t)=cos(t) yi(t- I)+ t2y2(t)-e’y,(f), 

Y;(t) = .r:” sin(t-s)y,(t-s)ds+ i y2(t-m)--y,(t). 
m=3 

In this case T = 7 and the inequalities (10) become 

e7E(a, Ices(t)\ +a,t’)<a,(e’-&)), 

e 7E ds+a,5 < a,(6 - E). 

For example, we can choose a1 = 1, a2 = 10, and E= 10P4. Then the first 
inequality holds if t is big enough, and from the fact that e’“(2fl+ 50) d 
10(6-s) it is easy to see that the second inequality holds, too. Hence, the 
system is shown to be asymptotically stable. 

3. SCALAR EQUATIONS WITH A SINGLE DELAY 

This section is devoted to the study of a very special case of (1) namely, 
weputn=land?,,(s)=Ofors<Tand?,,(s)=lfors~T.Moreover,we 
require that b,,(t, s) does not depend on s. When omitting the subscripts 
this leads to the following equation 

y’(t) = b(t) A- T) - c(t) y(t), t 30. (12) 
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This equation has already been treated in [3]. One of the results obtained 
in this paper says that the zero solution is asymptotically stable provided 
that b(t) is periodic of period T and there exists q > 0 such that 

t > 0. (13) 

This result is also an easy consequence of Corollary 4. Namely, from the 
fact that b(t) is bounded and (13) it follows that there must exist E > 0 such 
that 

eaT 1 b(t) 1 d c(t) - E, t 20. 

Observe, that we did not make use of the assumption that b(t) is periodic. 
It is enough to assume that b(t) is bounded. Now we specialize Theorem 1 
to Eq. (12). 

COROLLARY 5. The zero solution of’ (12) is asymptotically stable 
provided that there exists t, b 0 and a continuous function g(t) such that 

lim ” 
., + co s g(r) dr = -00, (14) r. 

lb(t)1 e-I:~mcr,~~ir~(t)+g(t), t>t,. (15) 

In the special case that T = 0, i.e., there is no delay, we can choose g(t) = 
1 b(t) ( -c(t). Then we actually have equality in (15). In fact, the zero 
solution is asymptotically stable if 

lim I “(lb(r)1-c(r))dr= -a. s+;;c 0 (16) 

Now the question arises if this is also true in the case where T > 0. The 
answer is negative as the following example shows. Indeed, there exist 
T> 0 and functions b(t), c(t) such that the zero solution is asymptotically 
stable and 

lim ‘((b(r)I-c(r))dr=a. 
I (17) s-cc 0 

EXAMPLE 2. For a fixed number u > 0 define the functions 

b(t) = 
u’($ - 1; - tl), tit? r23) 

0, t E co, 2) u C3,10), 
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I 
u( -1 + 2t), 

u, 
g(t) = 

u(9 - 2t), 

-4 

tE I3 1) 

tE CL 4) 

tE C4,5) 

t E [S, 10) 

and extend these functions periodically on all of IL! + . Moreover, we put 
c(t) = u and T= 1. Now we have that 

/‘10~b(r)~dr-~10~(r)dr=u2~-10u. 
0 0 

Hence, if we require that u > 40 and since b(t), c(t) are periodic it follows 
that (17) holds. Furthermore, when integrating the function g(t) over the 
four different ranges specified above, we find that 

I 
IO 

g(r)dr=u(O+3+0-5)= -2~4~0 o 

and hence, the Eq. (14) must hold. Inequality (15) is certainly satisfied if 
t E [0, 2) u [3, 10). In the case that t E [2,3) we observe that 
liP 1 g(r) dr = u and 

Moreover, in this case g(t) + c(t) = 22.4 and we can find u > 40 such that 

For this choice of u the inequality (15) is satisfied for all t > 0 and the zero 
solution is proved to be asymptotically stable. 

Remark. Analogously as in Example 2 one can find functions b(t), c(t) 
such that the zero solution is not asymptotically stable and (16) is fulfilled. 

4. LINEAR LYAPUNOV FUNCTIONALS 

In Theorems 1 and 2 we have established criteria for the asymptotic 
stability of the zero solution which involve summations over the second 
index of the matrices (bik) and (qik). In this section we derive additional 
criteria which involve summations over the first index of the matrices. 

THEOREM 3. The systems (1) and (4) are asymptotically stable if there 
exist constants to >, 0, cli > 0 and continuous functions g,(t) such that 
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(18) 

< (ci(t) - gJt)) cl;eJ~og’(‘)L” (19) 

hold for all t 3 t,, and i= l,..., n. 

Proof: Let z,(t) be a solution of (4) with z,(t) > 0 for t E [ -T, 0] and 
i = l,..., n. From Corollary 2 we know that z,(t) > 0 for t > -T and 
i= l,..., n. NOW we put 

hi( [) = &&“‘(‘) ffr 

and introduce the linear Lyapunov functional 

From (4) it follows that 

w’(t) = i h;(t) z,(t) 
,=l 

+ i h;(t) j7ih,k@,dI Zk(f-S)d’lik(S) 
r,k = I 0 

- i h;(t) r;(r) z,(t) 
,=I 

+ ;,kc , jo7k + S) 1 ‘rk(l + s,s) 1 Zk(f) dvikb) 

The second and the last term in the expression above cancel and after 
rearranging the order of summation we obtain 

w’(t) = i h:(t) - h,(t) c,(t) 
!=I 

+ i] jFhk(t+J) Ibkr(t+s>~)I dVki(s) 
> 

Z,(f). 
k=l 0 
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Now from (19) it follows tat 

hi(t)-hj(t)Ci(t)+ i lThk(t+S) )bkj(f+SyS)I &ki(S)<O 
k=l o 

for all t 2 to and i = l,..., n. Since z,(t) > 0 it follows that w’(t) < 0 for t 3 to 
and therefore, the function w(t) is bounded from above. 

From the definition of w(t) it is easy to see that 

0 6 hi(Z) z,(t) <w(t), t 2 to, i = l,.,., n. (20) 

Moreover, we can see from (18) that 

lim hi(t) = co, i = l,..., n, 
r-22 

and hence, from (20) it follows that 

lim z,(t) = 0, i= 1 ,..., n. 
,-CC 

So we have found one solution which tends to the zero solution and the 
proof finishes in the same way as the proof of Theorem 1. 

Similarly, one obtains the following counterpart to Theorem 3. However, 
one needs the additional assumption that all the functions bik are bounded 
to make the analogous conclusion as it was done in (20). Namely, from the 
conditions 

lim h,(s) = 0, i = l,..., n, 
*+a 

w(t)>6>0, t> to, 

we find that 

lim sup zi(s) = cc 
.T 4 m 

for some j E { l,..., n >. 

THEOREM 4. Suppose that the functions 6, are bounded and there exist 
constants to >,O, ai > 0 and continuous functions gj(t) such that the con- 
ditions 

lim s--+00 s tl gi(r)dr= -00, (21) 
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j, JOT I bkj(l + s, s) ( LYkeJ:wr) A. dffki(S) 

3 (Ci( t) - gi( t) cr,eJ:og’(‘) dr (22) 

holdfor all t > to and i = l,..., n. Then the system (4) has unbounded solutions. 

One can derive the following result from Theorem 3 and 4 in a way 
analogous to the proof of Corollary 4. 

COROLLARY 6. (i) The systems (1) and (4) are asymptotically stable 
provided that there exist to > 0, E > 0, LX, > 0 such that 

eET ,g, JOT ak I bdf + s, s) 1 dVki(S) 6 a,(Ci(t) -El (23) 

for all t 2 f,, and i = l,..., n. 

(ii) If the functions 6, are bounded and there exist to 3 0, E > 0, cti > 0 
such that 

(24) 

for all tat, and i= l,..., n, then the system (4) has unbounded solutions. 

The applicability of Corollary 6 is illustrated by the following example. 

EXAMPLE 3. We consider the system 

z;(t)= J”(l + cos(t-s))~~(t-s)ds+~~~(t-4)-2~~(f), 
0 

z;(t)=3z,(r)fj12zl(t-s)ds-z*(l). 

In this case we can choose T= 4 and the inequalities (24) become 

e-4”@.,(l + COS(f))n+ 3U, 2 a,(2 + E) 

eC4”a, $ +a, dcr,(l +E). 

Now we can choose, e.g., c1 1 = ~1~ = 1 and the inequalities above certainly 
hold for sufficiently small E > 0 and the system is proved to have unboun- 
ded solutions. 
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